buch baséiert Test «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Fräisstolden
Afrikaans
Azərbaycan
Bosanski
Català
Cebuano
Chichewa
Corsu
Cymraeg
Dansk
Deutsch
Eesti
English
Español
Esperanto
Euskara
Filipino
Français
Frysk
Gaeilge
Galego
Gàidhlig na h-Alba
Hausa
Hawaiʻi
Hmoob
Hrvatski
Igbo
Indonesia
Italiano
Jawa
Kinyarwanda
Kreyòl Ayisyen
Kurdî
Latinus
Latviski
Lietuvių
Lëtzebuergesch
Magyar
Malagasy
Malti
Maori
Melayu
Nederlands
Norske
O'zbek
Polskie
Português
Română
Samoa
Sesotho
Shona
Shqip
Slovenski
Slovenský
Soomaali
Sunda
Suomen
Svenska
Tiếng Việt
Türkmenler
Türkçe
Yoruba
Zulu
isiXhosa
kiswahili
Íslenska
Čeština
Ελληνικά
Беларуская
Български
Кыргызча
Македонски
Монгол
Русский
Српски
Татар
Тоҷикӣ
Українська
Қазақ
հայերեն
יידיש
עִברִית
ئۇيغۇرچە
اردو
سنڌي
عربي
فارسی
پښتو
नेपाली
मराठी
हिन्दी
বাংলা
ਪੰਜਾਬੀ
ગુજરાતી
ଓଡିଆ
தமிழ்
తెలుగు
ಕನ್ನಡ
മലയാളം
සිංහල
ไทย
ພາສາລາວ
မြန်မာ
ქართული
አማርኛ
ខ្មែរ
中文(简体)
日本
한국인

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Aktiounen vun de Firmen a Relatioun mam Personal am leschte Mount (jo / nee)

2) Aktiounen vun Firmen a Relatioun mam Personal am leschte Mount (Fakt an%)

3) Ängschen

4) Gréisste Probleemer vis-à-vis vum Land

5) Wat Qualitéiten a Fäegkeeten maachen gutt Leadere benotzen wann Dir erfollegräich Équipë baut?

6) Google. Facteuren déi den Teacher Effectivess

7) D'Haaptprioritéite vun Aarbechtssiche

8) Wat mécht e Patron e grousse Leader?

9) Wat mécht d'Leit erfollegräich op der Aarbecht?

10) Sidd Dir prett manner bezuelt fir Remote ze kréien?

11) Ass de Alterismus?

12) Alterismus an der Carrière

13) Agenmus am Liewen

14) Ursaachen vum Avisismus

15) Grënn firwat d'Leit opginn (vum Anna vital)

16) Vertrau méi trau (#WVS)

17) Oxford Gléck Ëmfro

18) Psychologesch Wuelbefannen

19) Wou wier Är nächst spannendst Geleeënheet?

20) Wat maacht Dir dës Woch fir Är mental Gesondheet ze kucken?

21) Ech wunnen iwwer meng Vergaangenheet, präsent oder zukünfteg

22) Merichokratie

23) Kënschtlech Intelligenz an d'Enn vun der Zivilisatioun

24) Firwat procrastinéieren?

25) Geschlecht Ënnerscheed am Gebai Selbstvertrauen (ifed Allensbach)

26) Xing.com Kultur Bewäertung

27) De Patrick Lncioni ass "déi fënnef Dysfunktiounen vun engem Team"

28) Empathie ass ...

29) Wat ass essentiell fir et Spezialisten fir eng Joboffer ze wielen?

30) Firwat Leit widderstoen änneren (vum Siobhán Machle)

31) Wéi regléiert Dir Är Emotiounen? (vum Nawal Mustafa M.a.)

32) 21 Fäegkeeten déi Iech fir ëmmer bezuelen (vum Jeremiah Teo / 赵汉昇)

33) Richteg Fräiheet ass ...

34) 12 Weeër fir Vertrauen mat aneren ze bauen (vum Justin Wright)

35) Charakteristike vun engem talentéierten Employé (duerch Talent Managementinstitut)

36) 10 Schlësselen fir Äert Team motivéieren

37) Algebra of Conscience (vum Vladimir Lefebvre)

38) Dräi Distinct Méiglechkeeten vun der Zukunft (vum Dr. Clare W. Graves)

39) Aktiounen fir onwahrscheinlech Selbstvertrauen ze bauen (vum Suren Samarchyan)

40)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Ängschen

ChartsKorrelatioun
?
Dës Funktioun berechent automatesch linear an net-linear Korrelatioun. Ier Dir Korrelatiounsanalyse ausféiert, erstellt e Scatterplot fir d'Natur vun de Bezéiungen z'iwwerpréiwen. Korrelatiounskoeffizienten si sënnvoll nëmme wann den ugehollen Relatiounstyp visuell oder analytesch bestätegt ass.
VUCA
?
Hei ass eng nei Interface Vue vun Korrelatioun an enger Tabell duerch Niveauen vun Spiral Dynamik wou Volatilitéit, Onsécherheet, Komplexitéit, an Ambiguititéit (V.U.C.A.) duerch positiv an negativ Korrelatioun Ofhängegkeeten tëscht den Äntwerte vun der Ëmfro an de Spiral Dynamik Faarwen gewisen.
Land
Sprooch
-
Mail
Recalkuléieren
Korrelatioun Typ
Linear (Pearson)
Linear (Pearson)
Net-linear (Spearman)
Kritescher Wäert vun der Korrelatioun souguer gemaach
Normal Verdeelung, vum William Sighty Goesset (Student)
Normal Verdeelung, vum William Sighty Goesset (Student)
Net normal Verdeelung, vum Spärman
VerdeelungNet
normal
Net
normal
Net
normal
NormelleNormelleNormelleNormelleNormelle
All Froen
All Froen
Meng gréissten Angscht ass
Meng gréissten Angscht ass
Answer 1-
Schwaach positiv
0.0475
Schwaach positiv
0.0240
Schwaach negativ
-0.0226
Schwaach positiv
0.0986
Schwaach positiv
0.0351
Schwaach negativ
-0.0121
Schwaach negativ
-0.1503
Answer 2-
Schwaach positiv
0.0245
Schwaach positiv
0.0004
Schwaach negativ
-0.0421
Schwaach positiv
0.0611
Schwaach positiv
0.0463
Schwaach positiv
0.0149
Schwaach negativ
-0.0983
Answer 3-
Schwaach negativ
-0.0019
Schwaach positiv
0.0062
Schwaach negativ
-0.0476
Schwaach negativ
-0.0427
Schwaach positiv
0.0421
Schwaach positiv
0.0743
Schwaach negativ
-0.0235
Answer 4-
Schwaach positiv
0.0457
Schwaach positiv
0.0324
Schwaach negativ
-0.0274
Schwaach positiv
0.0183
Schwaach positiv
0.0363
Schwaach positiv
0.0209
Schwaach negativ
-0.1005
Answer 5-
Schwaach positiv
0.0206
Schwaach positiv
0.1299
Schwaach positiv
0.0046
Schwaach positiv
0.0843
Schwaach negativ
-0.0004
Schwaach negativ
-0.0133
Schwaach negativ
-0.1814
Answer 6-
Schwaach positiv
0.0048
Schwaach positiv
0.0159
Schwaach negativ
-0.0645
Schwaach negativ
-0.0115
Schwaach positiv
0.0159
Schwaach positiv
0.0866
Schwaach negativ
-0.0360
Answer 7-
Schwaach positiv
0.0074
Schwaach positiv
0.0446
Schwaach negativ
-0.0685
Schwaach negativ
-0.0340
Schwaach positiv
0.0449
Schwaach positiv
0.0749
Schwaach negativ
-0.0514
Answer 8-
Schwaach positiv
0.0625
Schwaach positiv
0.0859
Schwaach negativ
-0.0296
Schwaach positiv
0.0111
Schwaach positiv
0.0345
Schwaach positiv
0.0169
Schwaach negativ
-0.1358
Answer 9-
Schwaach positiv
0.0771
Schwaach positiv
0.1611
Schwaach negativ
-0.0012
Schwaach positiv
0.0614
Schwaach negativ
-0.0082
Schwaach negativ
-0.0501
Schwaach negativ
-0.1766
Answer 10-
Schwaach positiv
0.0797
Schwaach positiv
0.0626
Schwaach negativ
-0.0156
Schwaach positiv
0.0234
Schwaach positiv
0.0393
Schwaach negativ
-0.0075
Schwaach negativ
-0.1361
Answer 11-
Schwaach positiv
0.0675
Schwaach positiv
0.0563
Schwaach negativ
-0.0089
Schwaach positiv
0.0090
Schwaach positiv
0.0239
Schwaach positiv
0.0188
Schwaach negativ
-0.1245
Answer 12-
Schwaach positiv
0.0409
Schwaach positiv
0.1034
Schwaach negativ
-0.0369
Schwaach positiv
0.0351
Schwaach positiv
0.0274
Schwaach positiv
0.0253
Schwaach negativ
-0.1514
Answer 13-
Schwaach positiv
0.0734
Schwaach positiv
0.1021
Schwaach negativ
-0.0371
Schwaach positiv
0.0271
Schwaach positiv
0.0306
Schwaach positiv
0.0129
Schwaach negativ
-0.1579
Answer 14-
Schwaach positiv
0.0849
Schwaach positiv
0.0926
Schwaach negativ
-0.0077
Schwaach negativ
-0.0146
Schwaach positiv
0.0047
Schwaach positiv
0.0090
Schwaach negativ
-0.1149
Answer 15-
Schwaach positiv
0.0605
Schwaach positiv
0.1300
Schwaach negativ
-0.0326
Schwaach positiv
0.0107
Schwaach negativ
-0.0200
Schwaach positiv
0.0224
Schwaach negativ
-0.1174
Answer 16-
Schwaach positiv
0.0705
Schwaach positiv
0.0323
Schwaach negativ
-0.0366
Schwaach negativ
-0.0428
Schwaach positiv
0.0655
Schwaach positiv
0.0145
Schwaach negativ
-0.0708


Export zu MS Excel
Dës Funktionalitéit wäert an Ären eegene VUCA Ëmfroen sinn
Ok

You can not only just create your poll in the Tarif- «V.U.C.A Emfro Designer» (with a unique link and your logo) but also you can earn money by selling its results in the Tarif- «Poll Butteker», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing Tarif- «Meng SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
FearpersonqualitiesprojectorganizationalstructureRACIresponsibilitymatrixCritical ChainProject Managementfocus factorJiraempathyleadersbossGermanyChinaPolicyUkraineRussiawarvolatilityuncertaintycomplexityambiguityVUCArelocatejobproblemcountryreasongive upobjectivekeyresultmathematicalpsychologyMBTIHR metricsstandardDEIcorrelationriskscoringmodelGame TheoryPrisoner's Dilemma
Valerii Kosenko
Produit Besëtzer SaaS SDTEST®

De Valerii gouf 1993 als Sozialpädagog-Psycholog qualifizéiert an huet zënterhier säi Wëssen an der Projektmanagement applizéiert.
De Valerii krut e Masterstudium an d'Qualifikatioun vum Projet a Programmmanager am Joer 2013. Während sengem Masterprogramm huet hie sech mam Project Roadmap (GPM Deutsche Gesellschaft für Projektmanagement e. V.) a Spiral Dynamics vertraut.
Valerii ass den Auteur fir d'Onsécherheet vun der V.U.C.A. Konzept mat Spiral Dynamik a mathematesch Statistiken an der Psychologie, an 38 international Ëmfroen.
Dëse Post huet 0 Kommentarer
Äntwert op
Annuléieren eng Äntwert
Entlooss Äre Kommentar
×
Dir E Feeler
Proposéieren ÄR WOUER VERSIOUN
Gitt Är E-Mail als gewënschte
schécken
annuléieren
Redirect to your region's domain sdtest.us ?
YES
NO
Bot
sdtest
1
Moien alleguer! Loosst mech Iech froen, hutt Dir scho mat Spiral Dynamik vertraut?