Grāmata balstīta tests «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Sponsors
Afrikaans
Azərbaycan
Bosanski
Català
Cebuano
Chichewa
Corsu
Cymraeg
Dansk
Deutsch
Eesti
English
Español
Esperanto
Euskara
Filipino
Français
Frysk
Gaeilge
Galego
Gàidhlig na h-Alba
Hausa
Hawaiʻi
Hmoob
Hrvatski
Igbo
Indonesia
Italiano
Jawa
Kinyarwanda
Kreyòl Ayisyen
Kurdî
Latinus
Latviski
Lietuvių
Lëtzebuergesch
Magyar
Malagasy
Malti
Maori
Melayu
Nederlands
Norske
O'zbek
Polskie
Português
Română
Samoa
Sesotho
Shona
Shqip
Slovenski
Slovenský
Soomaali
Sunda
Suomen
Svenska
Tiếng Việt
Türkmenler
Türkçe
Yoruba
Zulu
isiXhosa
kiswahili
Íslenska
Čeština
Ελληνικά
Беларуская
Български
Кыргызча
Македонски
Монгол
Русский
Српски
Татар
Тоҷикӣ
Українська
Қазақ
հայերեն
יידיש
עִברִית
ئۇيغۇرچە
اردو
سنڌي
عربي
فارسی
پښتو
नेपाली
मराठी
हिन्दी
বাংলা
ਪੰਜਾਬੀ
ગુજરાતી
ଓଡିଆ
தமிழ்
తెలుగు
ಕನ್ನಡ
മലയാളം
සිංහල
ไทย
ພາສາລາວ
မြန်မာ
ქართული
አማርኛ
ខ្មែរ
中文(简体)
日本
한국인

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Uzņēmumu darbības saistībā ar personālu pēdējā mēneša laikā (jā / nē)

2) Uzņēmumu darbības attiecībā uz personālu pēdējā mēneša laikā (fakts%)

3) Bailes

4) Lielākās problēmas, ar kurām saskaras mana valsts

5) Kādas īpašības un spējas labas vadītājus izmanto, veidojot veiksmīgas komandas?

6) Google. Faktori, kas ietekmē komandas efektivitāti

7) Galvenās darba meklētāju prioritātes

8) Kas padara priekšnieku par lielisku vadītāju?

9) Kas padara cilvēkus par veiksmīgiem darbā?

10) Vai esat gatavs saņemt mazāk atalgojuma par darbu attālināti?

11) Vai vecums pastāv?

12) Ageisms karjerā

13) Vecums dzīvē

14) Agisma cēloņi

15) Iemesli, kāpēc cilvēki atsakās (Anna Vital)

16) Uzticība (#WVS)

17) Oksfordas laimes aptauja

18) Psiholoģiskā labklājība

19) Kur būtu jūsu nākamā aizraujošākā iespēja?

20) Ko jūs darīsit šonedēļ, lai rūpētos par savu garīgo veselību?

21) Es dzīvoju, domājot par savu pagātni, tagadni vai nākotni

22) Meritokrātija

23) Mākslīgais intelekts un civilizācijas beigas

24) Kāpēc cilvēki kavējas?

25) Dzimumu atšķirība pašpārliecinātības veidošanā (ifd allensbach)

26) Xing.com kultūras novērtējums

27) Patrika Lencioni "Piecas komandas disfunkcijas"

28) Empātija ir ...

29) Kas ir svarīgi IT speciālistiem, izvēloties darba piedāvājumu?

30) Kāpēc cilvēki pretojas pārmaiņām (autors Siobhán McHale)

31) Kā jūs regulējat savas emocijas? (autors Nawal Mustafa M.A.)

32) 21 prasmes, kas jums maksā mūžīgi (Jeremiah Teo / 赵汉昇)

33) Īsta brīvība ir ...

34) 12 veidi, kā veidot uzticību citiem (autors Džastins Raits)

35) Talantīga darbinieka raksturojums (autors talantu vadības institūts)

36) 10 atslēgas jūsu komandas motivēšanai

37) Sirdsapziņas algebra (Vladimirs Lefevrs)

38) Trīs atšķirīgas nākotnes iespējas (autors. Dr. Clare W. Graves)

39) Darbības nesatricināmas pašapziņas veidošanai (autors Surens Samarčjans)

40)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Bailes

chartsKorelācija
?
Šī funkcija automātiski aprēķina lineāro un nelineāro korelāciju. Pirms korelācijas analīzes veikšanas izveidojiet izkliedes diagrammu, lai pārbaudītu attiecību raksturu. Korelācijas koeficientiem ir nozīme tikai tad, ja pieņemtais attiecību veids ir vizuāli vai analītiski apstiprināts.
VUCA
?
Šeit ir jauns korelācijas interfeisa skats tabulā pēc spirālveida dinamikas līmeņa, kurā nepastāvība, nenoteiktība, sarežģītība un neskaidrība (V.U.C.A.) tiek parādīta, izmantojot pozitīvas un negatīvas korelācijas atkarības starp aptaujas reakciju un spirāles dinamikas krāsu krāsām.
valsts
valoda
-
Mail
Pārrēķināt
Korelācijas veids
Lineārs (Pīrsons)
Lineārs (Pīrsons)
Nelineārs (Spīrmena)
Kritiskais vērtību korelācijas koeficienta
Normāla izplatīšana, autors Viljams Sealijs Gossets (students)
Normāla izplatīšana, autors Viljams Sealijs Gossets (students)
Non parasts sadalījums, autors Spearman
SadalījumsNenormālsNenormālsNenormālsNormālsNormālsNormālsNormālsNormāls
Visi jautājumi
Visi jautājumi
Mana lielākā bailes ir
Mana lielākā bailes ir
Answer 1-
Vāji pozitīvi
0.0477
Vāji pozitīvi
0.0239
Vāja negatīva
-0.0212
Vāji pozitīvi
0.0982
Vāji pozitīvi
0.0382
Vāja negatīva
-0.0153
Vāja negatīva
-0.1516
Answer 2-
Vāji pozitīvi
0.0242
Vāja negatīva
-0.0012
Vāja negatīva
-0.0400
Vāji pozitīvi
0.0591
Vāji pozitīvi
0.0495
Vāji pozitīvi
0.0116
Vāja negatīva
-0.0972
Answer 3-
Vāja negatīva
-1.34E-7
Vāji pozitīvi
0.0010
Vāja negatīva
-0.0442
Vāja negatīva
-0.0427
Vāji pozitīvi
0.0431
Vāji pozitīvi
0.0729
Vāja negatīva
-0.0236
Answer 4-
Vāji pozitīvi
0.0463
Vāji pozitīvi
0.0330
Vāja negatīva
-0.0229
Vāji pozitīvi
0.0172
Vāji pozitīvi
0.0369
Vāji pozitīvi
0.0187
Vāja negatīva
-0.1027
Answer 5-
Vāji pozitīvi
0.0237
Vāji pozitīvi
0.1294
Vāji pozitīvi
0.0082
Vāji pozitīvi
0.0822
Vāji pozitīvi
2.96E-5
Vāja negatīva
-0.0172
Vāja negatīva
-0.1809
Answer 6-
Vāji pozitīvi
0.0079
Vāji pozitīvi
0.0156
Vāja negatīva
-0.0617
Vāja negatīva
-0.0131
Vāji pozitīvi
0.0174
Vāji pozitīvi
0.0832
Vāja negatīva
-0.0370
Answer 7-
Vāji pozitīvi
0.0099
Vāji pozitīvi
0.0404
Vāja negatīva
-0.0639
Vāja negatīva
-0.0345
Vāji pozitīvi
0.0483
Vāji pozitīvi
0.0688
Vāja negatīva
-0.0511
Answer 8-
Vāji pozitīvi
0.0643
Vāji pozitīvi
0.0843
Vāja negatīva
-0.0266
Vāji pozitīvi
0.0098
Vāji pozitīvi
0.0382
Vāji pozitīvi
0.0130
Vāja negatīva
-0.1371
Answer 9-
Vāji pozitīvi
0.0795
Vāji pozitīvi
0.1603
Vāji pozitīvi
0.0017
Vāji pozitīvi
0.0605
Vāja negatīva
-0.0067
Vāja negatīva
-0.0516
Vāja negatīva
-0.1791
Answer 10-
Vāji pozitīvi
0.0793
Vāji pozitīvi
0.0618
Vāja negatīva
-0.0138
Vāji pozitīvi
0.0228
Vāji pozitīvi
0.0377
Vāja negatīva
-0.0091
Vāja negatīva
-0.1333
Answer 11-
Vāji pozitīvi
0.0680
Vāji pozitīvi
0.0562
Vāja negatīva
-0.0083
Vāji pozitīvi
0.0087
Vāji pozitīvi
0.0256
Vāji pozitīvi
0.0174
Vāja negatīva
-0.1252
Answer 12-
Vāji pozitīvi
0.0418
Vāji pozitīvi
0.0986
Vāja negatīva
-0.0340
Vāji pozitīvi
0.0317
Vāji pozitīvi
0.0311
Vāji pozitīvi
0.0225
Vāja negatīva
-0.1486
Answer 13-
Vāji pozitīvi
0.0749
Vāji pozitīvi
0.0972
Vāja negatīva
-0.0366
Vāji pozitīvi
0.0253
Vāji pozitīvi
0.0370
Vāji pozitīvi
0.0103
Vāja negatīva
-0.1575
Answer 14-
Vāji pozitīvi
0.0891
Vāji pozitīvi
0.0934
Vāja negatīva
-0.0060
Vāja negatīva
-0.0146
Vāji pozitīvi
0.0043
Vāji pozitīvi
0.0070
Vāja negatīva
-0.1173
Answer 15-
Vāji pozitīvi
0.0582
Vāji pozitīvi
0.1257
Vāja negatīva
-0.0305
Vāji pozitīvi
0.0112
Vāja negatīva
-0.0187
Vāji pozitīvi
0.0241
Vāja negatīva
-0.1172
Answer 16-
Vāji pozitīvi
0.0722
Vāji pozitīvi
0.0285
Vāja negatīva
-0.0348
Vāja negatīva
-0.0447
Vāji pozitīvi
0.0687
Vāji pozitīvi
0.0125
Vāja negatīva
-0.0702


Eksportēt uz MS Excel
Šī funkcija būs pieejama jūsu VUCA aptaujās
Labi

You can not only just create your poll in the tarifs «V.U.C.A aptauja dizainers» (with a unique link and your logo) but also you can earn money by selling its results in the tarifs «Aptaujas veikals», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing tarifs «Mans SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
FearpersonqualitiesprojectorganizationalstructureRACIresponsibilitymatrixCritical ChainProject Managementfocus factorJiraempathyleadersbossGermanyChinaPolicyUkraineRussiawarvolatilityuncertaintycomplexityambiguityVUCArelocatejobproblemcountryreasongive upobjectivekeyresultmathematicalpsychologyMBTIHR metricsstandardDEIcorrelationriskscoringmodelGame TheoryPrisoner's Dilemma
Valerii Kosenko
Produkta īpašnieks SaaS SDTEST®

Valērijs 1993. gadā ieguva sociālā pedagoga-psihologa kvalifikāciju un kopš tā laika ir pielietojis savas zināšanas projektu vadībā.
Valērijs 2013. gadā ieguva maģistra grādu un projektu un programmu vadītāja kvalifikāciju. Maģistra programmas laikā viņš iepazinās ar Project Roadmap (GPM Deutsche Gesellschaft für Projektmanagement e. V.) un Spiral Dynamics.
Valerii ir V.U.C.A. nenoteiktības izpētes autors. koncepcija, izmantojot spirālveida dinamiku un matemātisko statistiku psiholoģijā, un 38 starptautiskas aptaujas.
Šim amatam ir 0 Komentāri
Atbildēt uz
Atcelt atbildi
Atstājiet savu komentāru
×
Atrodat kļūdu
Informējiet par pareizo versiju
Ievadiet savu e-pasta adresi, kā vēlamo
Sūtīt
atcelt
Redirect to your region's domain sdtest.us ?
YES
NO
Bot
sdtest
1
Sveiki! Ļaujiet man jums jautāt, vai jūs jau esat pazīstams ar spirāles dinamiku?