This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions:
Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.
This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.
The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.
The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.
The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.
Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.
Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.
Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.
Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.
What sets mathematical psychology apart from other branches of psychology in its use of mathematics?
Several key aspects stand out:
So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.
What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.
Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.
For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.
Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.
Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.
This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.
The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.
The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.
3) 恐懼 4) 我國家面臨的最大問題 7) 求職者的主要優先事項 11) 是否存在年齡主義? 12) 職業中的年齡主義 13) 生活中的年齡主義 14) 年齡歧視的原因 16) 相信 (#WVS) 17) 牛津幸福調查 18) 心理健康 21) 我生活在思考我的過去,現在或將來 22) 精英制 23) 人工智能和文明的終結 24) 人們為什麼拖延? 26) XING.COM文化評估 27) 帕特里克·林奇尼(Patrick Lencioni)的“團隊的五個功能障礙” 28) 移情是... 29) IT專家選擇工作機會的必不可少? 30) 為什麼人們抵制變化(SiobhánMchale作者) 31) 您如何調節情緒? (由Nawal Mustafa M.A.) 32) 21個永遠付給您的技能(由Jeremiah Teo /趙漢昇) 33) 真正的自由是... 34) 與他人建立信任的12種方法(賈斯汀·賴特(Justin Wright)) 36) 激勵團隊的10個關鍵 37) 良心代數(弗拉基米爾·列斐伏爾)
分配 | 非正常 | 非正常 | 非正常 | 普通的 | 普通的 | 普通的 | 普通的 | 普通的 |
所有問題
所有問題
我最大的恐懼是
| ||||||||
我最大的恐懼是 | ||||||||
Answer 1 | - | Weak_positive 0.0527 | Weak_positive 0.0285 | Weak_negative -0.0166 | Weak_positive 0.0928 | Weak_positive 0.0327 | Weak_negative -0.0116 | Weak_negative -0.1549 |
Answer 2 | - | Weak_positive 0.0195 | Weak_negative -5.89E-5 | Weak_negative -0.0429 | Weak_positive 0.0649 | Weak_positive 0.0458 | Weak_positive 0.0130 | Weak_negative -0.0947 |
Answer 3 | - | Weak_negative -0.0057 | Weak_negative -0.0122 | Weak_negative -0.0426 | Weak_negative -0.0461 | Weak_positive 0.0497 | Weak_positive 0.0794 | Weak_negative -0.0206 |
Answer 4 | - | Weak_positive 0.0412 | Weak_positive 0.0301 | Weak_negative -0.0212 | Weak_positive 0.0164 | Weak_positive 0.0332 | Weak_positive 0.0239 | Weak_negative -0.0985 |
Answer 5 | - | Weak_positive 0.0228 | Weak_positive 0.1281 | Weak_positive 0.0113 | Weak_positive 0.0758 | Weak_positive 0.0012 | Weak_negative -0.0210 | Weak_negative -0.1767 |
Answer 6 | - | Weak_negative -0.0064 | Weak_positive 0.0102 | Weak_negative -0.0648 | Weak_negative -0.0078 | Weak_positive 0.0218 | Weak_positive 0.0841 | Weak_negative -0.0322 |
Answer 7 | - | Weak_positive 0.0116 | Weak_positive 0.0407 | Weak_negative -0.0708 | Weak_negative -0.0261 | Weak_positive 0.0477 | Weak_positive 0.0657 | Weak_negative -0.0510 |
Answer 8 | - | Weak_positive 0.0689 | Weak_positive 0.0843 | Weak_negative -0.0325 | Weak_positive 0.0141 | Weak_positive 0.0358 | Weak_positive 0.0131 | Weak_negative -0.1370 |
Answer 9 | - | Weak_positive 0.0673 | Weak_positive 0.1698 | Weak_positive 0.0092 | Weak_positive 0.0653 | Weak_negative -0.0145 | Weak_negative -0.0543 | Weak_negative -0.1802 |
Answer 10 | - | Weak_positive 0.0786 | Weak_positive 0.0755 | Weak_negative -0.0236 | Weak_positive 0.0250 | Weak_positive 0.0317 | Weak_negative -0.0149 | Weak_negative -0.1320 |
Answer 11 | - | Weak_positive 0.0630 | Weak_positive 0.0587 | Weak_negative -0.0098 | Weak_positive 0.0064 | Weak_positive 0.0192 | Weak_positive 0.0242 | Weak_negative -0.1220 |
Answer 12 | - | Weak_positive 0.0370 | Weak_positive 0.1001 | Weak_negative -0.0377 | Weak_positive 0.0354 | Weak_positive 0.0261 | Weak_positive 0.0282 | Weak_negative -0.1496 |
Answer 13 | - | Weak_positive 0.0632 | Weak_positive 0.1042 | Weak_negative -0.0440 | Weak_positive 0.0278 | Weak_positive 0.0427 | Weak_positive 0.0174 | Weak_negative -0.1629 |
Answer 14 | - | Weak_positive 0.0710 | Weak_positive 0.1009 | Weak_negative -0.0012 | Weak_negative -0.0094 | Weak_positive 0.0028 | Weak_positive 0.0088 | Weak_negative -0.1203 |
Answer 15 | - | Weak_positive 0.0556 | Weak_positive 0.1362 | Weak_negative -0.0416 | Weak_positive 0.0169 | Weak_negative -0.0155 | Weak_positive 0.0192 | Weak_negative -0.1168 |
Answer 16 | - | Weak_positive 0.0624 | Weak_positive 0.0310 | Weak_negative -0.0378 | Weak_negative -0.0426 | Weak_positive 0.0644 | Weak_positive 0.0249 | Weak_negative -0.0732 |