Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Akcije tvrtki u odnosu na osoblje u posljednjih mjesec dana (da / ne)

2) Djelovanja poduzeća u odnosu na osoblje u prošlom mjesecu (činjenica u%)

3) Strahovi

4) Najveći problemi s kojima se suočava moja zemlja

5) Koje osobine i sposobnosti dobri vođe koriste prilikom izgradnje uspješnih timova?

6) Google. Čimbenici koji utječu na efikasnost tima

7) Glavni prioriteti tražitelja posla

8) Zbog čega šefa čini sjajnim vođom?

9) Što ljude čini uspješnim na poslu?

10) Jeste li spremni primiti manje plaće za daljinski rad?

11) Postoji li ageizam?

12) Ageizam u karijeri

13) Ageizam u životu

14) Uzroci ageizma

15) Razlozi zbog kojih ljudi odustaju (od Anna Vital)

16) POVJERENJE (#WVS)

17) Anketa o Oxfordskoj sreći

18) Psihološko dobrobit

19) Gdje bi vam bila sljedeća najuzbudljivija prilika?

20) Što ćete učiniti ovaj tjedan da biste se brinuli o svom mentalnom zdravlju?

21) Živim razmišljajući o svojoj prošlosti, sadašnjosti ili budućnosti

22) Meritokracija

23) Umjetna inteligencija i kraj civilizacije

24) Zašto ljudi odgađaju?

25) Razlika u spolu u izgradnji samopouzdanja (IFD Allensbach)

26) Xing.com kultura procjena

27) Patrick Lencioni "Pet disfunkcija tima"

28) Empatija je ...

29) Što je bitno za IT stručnjake za odabir ponude za posao?

30) Zašto se ljudi odupiru promjenama (Siobhán McHale)

31) Kako regulirate svoje emocije? (Nawal Mustafa M.A.

32) 21 vještine koje vam plaćaju zauvijek (Jeremiah Teo / 赵汉昇)

33) Prava sloboda je ...

34) 12 načina za izgradnju povjerenja s drugima (Justin Wright)

35) Karakteristike talentiranog zaposlenika (Institutom za upravljanje talentima)

36) 10 ključeva za motiviranje vašeg tima

37) Algebra savjesti (Vladimir Lefebvre)

38) Tri različite mogućnosti budućnosti (dr. Clare W. Graves)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Strahovi

Zemlja
Jezik
-
Mail
Preračunati
Kritična vrijednost koeficijenta korelacije
Normalna distribucija, William Sealy Gosset (student) r = 0.033
Normalna distribucija, William Sealy Gosset (student) r = 0.033
Ne normalna distribucija, Spearman r = 0.0013
DistribucijaNe
normalan
Ne
normalan
Ne
normalan
NormalanNormalanNormalanNormalanNormalan
Sva pitanja
Sva pitanja
Moj najveći strah je
Moj najveći strah je
Answer 1-
Slaba pozitivan
0.0532
Slaba pozitivan
0.0292
Slaba negativan
-0.0175
Slaba pozitivan
0.0919
Slaba pozitivan
0.0301
Slaba negativan
-0.0114
Slaba negativan
-0.1523
Answer 2-
Slaba pozitivan
0.0208
Slaba negativan
-0.0014
Slaba negativan
-0.0431
Slaba pozitivan
0.0641
Slaba pozitivan
0.0449
Slaba pozitivan
0.0130
Slaba negativan
-0.0931
Answer 3-
Slaba negativan
-0.0053
Slaba negativan
-0.0130
Slaba negativan
-0.0406
Slaba negativan
-0.0456
Slaba pozitivan
0.0474
Slaba pozitivan
0.0793
Slaba negativan
-0.0204
Answer 4-
Slaba pozitivan
0.0427
Slaba pozitivan
0.0328
Slaba negativan
-0.0200
Slaba pozitivan
0.0158
Slaba pozitivan
0.0306
Slaba pozitivan
0.0217
Slaba negativan
-0.0980
Answer 5-
Slaba pozitivan
0.0255
Slaba pozitivan
0.1255
Slaba pozitivan
0.0143
Slaba pozitivan
0.0732
Slaba negativan
-0.0019
Slaba negativan
-0.0196
Slaba negativan
-0.1747
Answer 6-
Slaba negativan
-0.0027
Slaba pozitivan
0.0074
Slaba negativan
-0.0629
Slaba negativan
-0.0074
Slaba pozitivan
0.0199
Slaba pozitivan
0.0835
Slaba negativan
-0.0324
Answer 7-
Slaba pozitivan
0.0110
Slaba pozitivan
0.0371
Slaba negativan
-0.0688
Slaba negativan
-0.0227
Slaba pozitivan
0.0471
Slaba pozitivan
0.0650
Slaba negativan
-0.0523
Answer 8-
Slaba pozitivan
0.0693
Slaba pozitivan
0.0825
Slaba negativan
-0.0321
Slaba pozitivan
0.0139
Slaba pozitivan
0.0351
Slaba pozitivan
0.0147
Slaba negativan
-0.1369
Answer 9-
Slaba pozitivan
0.0643
Slaba pozitivan
0.1659
Slaba pozitivan
0.0082
Slaba pozitivan
0.0699
Slaba negativan
-0.0136
Slaba negativan
-0.0513
Slaba negativan
-0.1826
Answer 10-
Slaba pozitivan
0.0760
Slaba pozitivan
0.0730
Slaba negativan
-0.0219
Slaba pozitivan
0.0254
Slaba pozitivan
0.0318
Slaba negativan
-0.0138
Slaba negativan
-0.1318
Answer 11-
Slaba pozitivan
0.0571
Slaba pozitivan
0.0514
Slaba negativan
-0.0099
Slaba pozitivan
0.0077
Slaba pozitivan
0.0206
Slaba pozitivan
0.0308
Slaba negativan
-0.1211
Answer 12-
Slaba pozitivan
0.0373
Slaba pozitivan
0.1013
Slaba negativan
-0.0357
Slaba pozitivan
0.0357
Slaba pozitivan
0.0243
Slaba pozitivan
0.0296
Slaba negativan
-0.1524
Answer 13-
Slaba pozitivan
0.0621
Slaba pozitivan
0.1036
Slaba negativan
-0.0438
Slaba pozitivan
0.0273
Slaba pozitivan
0.0414
Slaba pozitivan
0.0176
Slaba negativan
-0.1608
Answer 14-
Slaba pozitivan
0.0703
Slaba pozitivan
0.1007
Slaba pozitivan
9.54E-5
Slaba negativan
-0.0088
Slaba negativan
-0.0011
Slaba pozitivan
0.0084
Slaba negativan
-0.1174
Answer 15-
Slaba pozitivan
0.0554
Slaba pozitivan
0.1349
Slaba negativan
-0.0418
Slaba pozitivan
0.0179
Slaba negativan
-0.0165
Slaba pozitivan
0.0219
Slaba negativan
-0.1181
Answer 16-
Slaba pozitivan
0.0581
Slaba pozitivan
0.0255
Slaba negativan
-0.0388
Slaba negativan
-0.0407
Slaba pozitivan
0.0654
Slaba pozitivan
0.0283
Slaba negativan
-0.0714


Izvoz u MS Excel
Ova funkcija će biti dostupna u vlastitim anketama VUCA
U redu

You can not only just create your poll in the Tarifa «V.U.C.A anketa dizajner» (with a unique link and your logo) but also you can earn money by selling its results in the Tarifa «Biračka trgovina», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing Tarifa «Moj SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii kosenko
Vlasnik proizvoda SaaS Pet Project SdTest®

Valerii je 1993. kvalificiran kao socijalni pedagogue-psiholog i od tada je svoje znanje primijenio u upravljanju projektima.
Valerii je stekao magisterij, a kvalifikacija za projekt i voditelj programa 2013. godine. Tijekom svog magistriranog programa upoznao se s Project Roadmapom (GPM Deutsche Gesellschaft Für Projektmanagement E. V.) i Spiral Dynamics.
Valerii je uzeo razne testove spiralne dinamike i iskoristio svoje znanje i iskustvo kako bi prilagodio trenutnu verziju SDTEST -a.
Valerii je autor istraživanja neizvjesnosti V.U.C.A. Koncept koji koristi spiralnu dinamiku i matematičku statistiku u psihologiji, više od 20 međunarodnih anketa.
Ovaj post ima 0 Komentari
Odgovarati na
Otkazati odgovor
Ostavite svoj komentar
×
Pronađete pogrešku
PREDLAGATI SVOJ ispravnu verziju
Upišite svoju e-mail po želji
Poslati
Otkazati
Redirect to your region's domain sdtest.us ?
YES
NO
Bot
sdtest
1
Bok tamo! Dopustite mi da vas pitam, da li ste već upoznati sa spiralnom dinamikom?