bók byggir próf «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Styrktaraðilar

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Aðgerðir fyrirtækja í tengslum við starfsfólk í síðasta mánuði (já / nei)

2) Aðgerðir fyrirtækja í tengslum við starfsfólk í síðasta mánuði (staðreynd í%)

3) Ótta.

4) Stærstu vandamálin standa frammi fyrir mínu landi

5) Hvaða eiginleikar og hæfileikar nota góðir leiðtogar þegar þeir byggja árangursrík teymi?

6) Google. Þættir sem hafa áhrif á teymisáhrif

7) Helstu forgangsröðun atvinnuleitenda

8) Hvað gerir yfirmann að frábærum leiðtoga?

9) Hvað gerir fólk farsælt í vinnunni?

10) Ertu tilbúinn að fá minni laun til að vinna lítillega?

11) Er aldurshyggja til?

12) Aldurshyggja á ferli

13) Aldurshyggja í lífinu

14) Orsakir aldurshyggju

15) Ástæður þess að fólk gefst upp (eftir Anna Vital)

16) Traust (#WVS)

17) Hamingjukönnun Oxford

18) Sálfræðileg vellíðan

19) Hvar væri næsta spennandi tækifæri þitt?

20) Hvað ætlar þú að gera þessa vikuna til að sjá um geðheilsu þína?

21) Ég lifi að hugsa um fortíð mína, nútíð eða framtíð

22) Meritocracy

23) Gervigreind og lok siðmenningarinnar

24) Af hverju frestast fólk?

25) Kynjamunur á að byggja upp sjálfstraust (IFD Allensbach)

26) Xing.com menningarmat

27) Patrick Lencioni „Fimm truflanir liðs“

28) Samkennd er ...

29) Hvað er mikilvægt fyrir það sérfræðinga í því að velja atvinnutilboð?

30) Af hverju fólk standast breytingar (eftir Siobhán McHale)

31) Hvernig stjórnarðu tilfinningum þínum? (eftir Nawal Mustafa M.A.)

32) 21 Færni sem borgar þér að eilífu (eftir Jeremiah Teo / 赵汉昇)

33) Raunverulegt frelsi er ...

34) 12 leiðir til að byggja upp traust með öðrum (eftir Justin Wright)

35) Einkenni hæfileikaríks starfsmanns (eftir hæfileikastjórnunarstofnun)

36) 10 lyklar til að hvetja liðið þitt

37) Algebra samviskunnar (eftir Vladimir Lefebvre)

38) Þrír aðskildir möguleikar framtíðarinnar (eftir Dr. Clare W. Graves)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Ótta.

Land
Tungumál
-
Mail
Endurreiknað
Critical gildi fylgnistuðull
Venjuleg dreifing, eftir William Sealy Gosset (námsmaður) r = 0.033
Venjuleg dreifing, eftir William Sealy Gosset (námsmaður) r = 0.033
Ekki venjuleg dreifing, eftir Spearman r = 0.0013
DreifingEkki
eðlilegt
Ekki
eðlilegt
Ekki
eðlilegt
VenjulegtVenjulegtVenjulegtVenjulegtVenjulegt
Allar spurningar
Allar spurningar
Mesta ótta mín er
Mesta ótta mín er
Answer 1-
Veikt jákvætt
0.0536
Veikt jákvætt
0.0297
Veikt neikvætt
-0.0174
Veikt jákvætt
0.0910
Veikt jákvætt
0.0303
Veikt neikvætt
-0.0114
Veikt neikvætt
-0.1522
Answer 2-
Veikt jákvætt
0.0197
Veikt neikvætt
-0.0002
Veikt neikvætt
-0.0449
Veikt jákvætt
0.0661
Veikt jákvætt
0.0446
Veikt jákvætt
0.0121
Veikt neikvætt
-0.0926
Answer 3-
Veikt neikvætt
-0.0055
Veikt neikvætt
-0.0120
Veikt neikvætt
-0.0413
Veikt neikvætt
-0.0450
Veikt jákvætt
0.0473
Veikt jákvætt
0.0789
Veikt neikvætt
-0.0205
Answer 4-
Veikt jákvætt
0.0427
Veikt jákvætt
0.0339
Veikt neikvætt
-0.0192
Veikt jákvætt
0.0153
Veikt jákvætt
0.0305
Veikt jákvætt
0.0210
Veikt neikvætt
-0.0983
Answer 5-
Veikt jákvætt
0.0252
Veikt jákvætt
0.1256
Veikt jákvætt
0.0135
Veikt jákvætt
0.0733
Veikt neikvætt
-0.0016
Veikt neikvætt
-0.0198
Veikt neikvætt
-0.1742
Answer 6-
Veikt neikvætt
-0.0024
Veikt jákvætt
0.0078
Veikt neikvætt
-0.0633
Veikt neikvætt
-0.0069
Veikt jákvætt
0.0198
Veikt jákvætt
0.0835
Veikt neikvætt
-0.0330
Answer 7-
Veikt jákvætt
0.0112
Veikt jákvætt
0.0375
Veikt neikvætt
-0.0688
Veikt neikvætt
-0.0225
Veikt jákvætt
0.0471
Veikt jákvætt
0.0647
Veikt neikvætt
-0.0528
Answer 8-
Veikt jákvætt
0.0698
Veikt jákvætt
0.0830
Veikt neikvætt
-0.0314
Veikt jákvætt
0.0137
Veikt jákvætt
0.0350
Veikt jákvætt
0.0144
Veikt neikvætt
-0.1376
Answer 9-
Veikt jákvætt
0.0644
Veikt jákvætt
0.1664
Veikt jákvætt
0.0083
Veikt jákvætt
0.0702
Veikt neikvætt
-0.0136
Veikt neikvætt
-0.0517
Veikt neikvætt
-0.1830
Answer 10-
Veikt jákvætt
0.0760
Veikt jákvætt
0.0738
Veikt neikvætt
-0.0199
Veikt jákvætt
0.0242
Veikt jákvætt
0.0319
Veikt neikvætt
-0.0149
Veikt neikvætt
-0.1320
Answer 11-
Veikt jákvætt
0.0580
Veikt jákvætt
0.0514
Veikt neikvætt
-0.0111
Veikt jákvætt
0.0076
Veikt jákvætt
0.0206
Veikt jákvætt
0.0318
Veikt neikvætt
-0.1213
Answer 12-
Veikt jákvætt
0.0367
Veikt jákvætt
0.1023
Veikt neikvætt
-0.0355
Veikt jákvætt
0.0359
Veikt jákvætt
0.0245
Veikt jákvætt
0.0286
Veikt neikvætt
-0.1524
Answer 13-
Veikt jákvætt
0.0619
Veikt jákvætt
0.1049
Veikt neikvætt
-0.0451
Veikt jákvætt
0.0281
Veikt jákvætt
0.0412
Veikt jákvætt
0.0173
Veikt neikvætt
-0.1609
Answer 14-
Veikt jákvætt
0.0707
Veikt jákvætt
0.1011
Veikt jákvætt
7.75E-5
Veikt neikvætt
-0.0083
Veikt neikvætt
-0.0012
Veikt jákvætt
0.0083
Veikt neikvætt
-0.1182
Answer 15-
Veikt jákvætt
0.0549
Veikt jákvætt
0.1358
Veikt neikvætt
-0.0409
Veikt jákvætt
0.0176
Veikt neikvætt
-0.0163
Veikt jákvætt
0.0208
Veikt neikvætt
-0.1180
Answer 16-
Veikt jákvætt
0.0582
Veikt jákvætt
0.0259
Veikt neikvætt
-0.0395
Veikt neikvætt
-0.0403
Veikt jákvætt
0.0652
Veikt jákvætt
0.0283
Veikt neikvætt
-0.0717


Flytja út í MS Excel
Þessi virkni verður í boði í eigin VUCA kannanir þínar
Ok

You can not only just create your poll in the gjaldskrá «V.U.C.A könnun hönnuður» (with a unique link and your logo) but also you can earn money by selling its results in the gjaldskrá «Skoðanakönnun», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing gjaldskrá «My SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Vörueigandinn SaaS Pet Project SDTEST®

Valerii var hæfur sem félagslegur kennslufræðingur árið 1993 og hefur síðan beitt þekkingu sinni í verkefnastjórnun.
Valerii náði meistaragráðu og hæfi verkefnis og dagskrárstjórans árið 2013. Meðan á meistaranámi sínu stóð kynntist hann Project Roadmap (GPM Deutsche Gesellschaft Für Projektmanagement e. V.) og Spiral Dynamics.
Valerii tók ýmis spíralvirknipróf og notaði þekkingu sína og reynslu til að laga núverandi útgáfu af SDTEST.
Valerii er höfundur þess að kanna óvissu V.U.C.A. Hugtak sem notar spíralvirkni og stærðfræðilega tölfræði í sálfræði, meira en 20 alþjóðlegar skoðanakannanir.
Þessi færsla hefur 0 Athugasemdir
Svara
Hætta við svar
Skildu athugasemd þína
×
Þú finnur villu
Leggja til rétta útgáfu ÞITT
Sláið inn e-mail eins og óskað er
Senda
Hætta við
Redirect to your region's domain sdtest.us ?
YES
NO
Bot
sdtest
1
Sæll! Leyfðu mér að spyrja þig, þekkir þú nú þegar spíralvirkni?