test založený book «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Sponzori

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Akcie spoločností vo vzťahu k personálu za posledný mesiac (áno / nie)

2) Akcie spoločností vo vzťahu k personálu v poslednom mesiaci (fakt v%)

3) Obávať

4) Najväčšie problémy, ktorým čelí moja krajina

5) Aké vlastnosti a schopnosti používajú dobrí vodcovia pri budovaní úspešných tímov?

6) Google. Faktory, ktoré ovplyvňujú efektívnosť tímu

7) Hlavné priority uchádzačov o zamestnanie

8) Čo robí šéfa skvelým vodcom?

9) Čo robí ľudí úspešnými v práci?

10) Ste pripravení na diaľku dostávať menej mzdy za prácu?

11) Existuje ageizmus?

12) Ageizmus v kariére

13) Ageizmus v živote

14) Príčiny ageizmu

15) Dôvody, prečo sa ľudia vzdávajú (Anna Vital)

16) Dôverovať (#WVS)

17) Prieskum o šťastí v Oxforde

18) Psychologický blahobyt

19) Kde by bola vaša ďalšia najzaujímavejšia príležitosť?

20) Čo urobíte tento týždeň, aby ste sa starali o svoje duševné zdravie?

21) Žijem premýšľam o svojej minulosti, prítomnosti alebo budúcnosti

22) Meritokracia

23) Umelá inteligencia a koniec civilizácie

24) Prečo ľudia odkladajú?

25) Rodové rozdiely v budovaní sebavedomia (IFD Allensbach)

26) Xing.com Hodnotenie kultúry

27) „Päť dysfunkcií tímu Patricka Lencioniho“

28) Empatia je ...

29) Čo je nevyhnutné pre IT špecialistov pri výbere ponuky práce?

30) Prečo ľudia odolávajú zmenám (od Siobhán McHale)

31) Ako regulujete svoje emócie? (Autor: Nawal Mustafa M.A.)

32) 21 zručností, ktoré vám platia navždy (od Jeremiáša Teo / 赵汉昇)

33) Skutočná sloboda je ...

34) 12 spôsobov, ako vybudovať dôveru s ostatnými (Justin Wright)

35) Charakteristiky talentovaného zamestnanca (Inštitút riadenia talentov)

36) 10 kľúčov k motivácii vášho tímu

37) Algebra svedomia (Vladimír Lefebvre)

38) Tri odlišné možnosti budúcnosti (Dr. Clare W. Graves)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Obávať

Krajina
Jazyk
-
Mail
Rozvíjať sa
Kritická hodnota korelačného koeficientu
Normálne rozdelenie, od Williama Sealyho Gosset (študent) r = 0.033
Normálne rozdelenie, od Williama Sealyho Gosset (študent) r = 0.033
Normálne rozdelenie, Spearman r = 0.0013
DistribúciaNekonečnýNekonečnýNekonečnýNormálnyNormálnyNormálnyNormálnyNormálny
Všetky otázky
Všetky otázky
Môj najväčší strach je
Môj najväčší strach je
Answer 1-
Slabo pozitívne
0.0532
Slabo pozitívne
0.0294
Slabý negatívny
-0.0180
Slabo pozitívne
0.0922
Slabo pozitívne
0.0300
Slabý negatívny
-0.0113
Slabý negatívny
-0.1522
Answer 2-
Slabo pozitívne
0.0207
Slabý negatívny
-0.0011
Slabý negatívny
-0.0438
Slabo pozitívne
0.0644
Slabo pozitívne
0.0447
Slabo pozitívne
0.0131
Slabý negatívny
-0.0929
Answer 3-
Slabý negatívny
-0.0053
Slabý negatívny
-0.0128
Slabý negatívny
-0.0410
Slabý negatívny
-0.0454
Slabo pozitívne
0.0473
Slabo pozitívne
0.0794
Slabý negatívny
-0.0203
Answer 4-
Slabo pozitívne
0.0426
Slabo pozitívne
0.0329
Slabý negatívny
-0.0202
Slabo pozitívne
0.0158
Slabo pozitívne
0.0306
Slabo pozitívne
0.0217
Slabý negatívny
-0.0980
Answer 5-
Slabo pozitívne
0.0255
Slabo pozitívne
0.1256
Slabo pozitívne
0.0141
Slabo pozitívne
0.0733
Slabý negatívny
-0.0019
Slabý negatívny
-0.0196
Slabý negatívny
-0.1747
Answer 6-
Slabý negatívny
-0.0027
Slabo pozitívne
0.0073
Slabý negatívny
-0.0627
Slabý negatívny
-0.0075
Slabo pozitívne
0.0199
Slabo pozitívne
0.0834
Slabý negatívny
-0.0325
Answer 7-
Slabo pozitívne
0.0111
Slabo pozitívne
0.0369
Slabý negatívny
-0.0684
Slabý negatívny
-0.0230
Slabo pozitívne
0.0472
Slabo pozitívne
0.0649
Slabý negatívny
-0.0524
Answer 8-
Slabo pozitívne
0.0694
Slabo pozitívne
0.0824
Slabý negatívny
-0.0317
Slabo pozitívne
0.0137
Slabo pozitívne
0.0352
Slabo pozitívne
0.0146
Slabý negatívny
-0.1370
Answer 9-
Slabo pozitívne
0.0644
Slabo pozitívne
0.1658
Slabo pozitívne
0.0085
Slabo pozitívne
0.0697
Slabý negatívny
-0.0135
Slabý negatívny
-0.0514
Slabý negatívny
-0.1827
Answer 10-
Slabo pozitívne
0.0760
Slabo pozitívne
0.0728
Slabý negatívny
-0.0214
Slabo pozitívne
0.0252
Slabo pozitívne
0.0319
Slabý negatívny
-0.0139
Slabý negatívny
-0.1319
Answer 11-
Slabo pozitívne
0.0570
Slabo pozitívne
0.0518
Slabý negatívny
-0.0106
Slabo pozitívne
0.0080
Slabo pozitívne
0.0205
Slabo pozitívne
0.0309
Slabý negatívny
-0.1210
Answer 12-
Slabo pozitívne
0.0373
Slabo pozitívne
0.1012
Slabý negatívny
-0.0356
Slabo pozitívne
0.0357
Slabo pozitívne
0.0243
Slabo pozitívne
0.0296
Slabý negatívny
-0.1524
Answer 13-
Slabo pozitívne
0.0620
Slabo pozitívne
0.1041
Slabý negatívny
-0.0449
Slabo pozitívne
0.0278
Slabo pozitívne
0.0412
Slabo pozitívne
0.0179
Slabý negatívny
-0.1607
Answer 14-
Slabo pozitívne
0.0703
Slabo pozitívne
0.1005
Slabo pozitívne
0.0005
Slabý negatívny
-0.0090
Slabý negatívny
-0.0010
Slabo pozitívne
0.0083
Slabý negatívny
-0.1176
Answer 15-
Slabo pozitívne
0.0554
Slabo pozitívne
0.1348
Slabý negatívny
-0.0414
Slabo pozitívne
0.0178
Slabý negatívny
-0.0164
Slabo pozitívne
0.0218
Slabý negatívny
-0.1182
Answer 16-
Slabo pozitívne
0.0580
Slabo pozitívne
0.0256
Slabý negatívny
-0.0392
Slabý negatívny
-0.0405
Slabo pozitívne
0.0653
Slabo pozitívne
0.0283
Slabý negatívny
-0.0714


Export do MS Excel
Táto funkcia bude k dispozícii vo vašich vlastných anketách VUCA
V poriadku

You can not only just create your poll in the tarifa «V.U.C.A hlasovanie designer» (with a unique link and your logo) but also you can earn money by selling its results in the tarifa «Prieskum», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing tarifa «My SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Majiteľ produktu SaaS Pet Project Sdtest®

Valerii bol v roku 1993 kvalifikovaný ako sociálny pedagógový psychológ a odvtedy uplatňoval svoje znalosti v oblasti projektového riadenia.
Valerii získal magisterský titul a kvalifikáciu projektu a programového manažéra v roku 2013. Počas magisterského programu sa zoznámil s projektovým plánom (GPM Deutsche Gesellschaft Für Projektmanagement e. V.) a dynamikou špirály.
Valerii absolvoval rôzne testy špirálovej dynamiky a využil svoje vedomosti a skúsenosti na prispôsobenie súčasnej verzie SDTEST.
Valerii je autorom skúmania neistoty V.U.C.A. Koncept využívajúci špirálovú dynamiku a matematickú štatistiku v psychológii, viac ako 20 medzinárodných prieskumov prieskumov.
Tento príspevok má 0 Pripomienky
Odpovedať
Zrušiť odpoveď
Zanechajte svoj komentár
×
nájdete chybu
Navrhnúť vaše správnu verziu
Zadajte svoj e-mail, ako je požadované
send
Zrušiť
Redirect to your region's domain sdtest.us ?
YES
NO
Bot
sdtest
1
Ahoj! Dovoľte mi, aby som sa vás opýtal, už ste oboznámení s dynamikou špirály?